Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006105

RESUMEN

The mechanical performance of thermoplastic bulk samples obtained by plasticizing wheat flours differing in grain hardness, alveographic parameters, absence or presence of bran, and grinding level was assessed. Grains of four bread wheat (Triticum aestivum L.) cultivars (Altamira, Aubusson, Blasco, and Bologna) were milled with the aim of producing single-cultivar refined flour (R), or wholegrain flour with fine (F) or coarse (C) grinding. The flours were plasticized, injection molded and tested for tensile properties. The results confirmed that the presence of bran increased the strength (σ) and reduced the elongation at break (ε) of thermoplastics obtained from the flours of each cultivar. The grinding level had an effect, since σ was higher and ε was lower in F than in C samples. SEM analysis of samples revealed that the bran and its texture affected the exposure of starch granules to plasticizer. Composting experiments also revealed that the formulations are able to disintegrate within 21 days with a mass loss rate higher in plastics from F than C flours, while germination tests carried out with cress seeds indicated that it takes two months before the compost loses its phytotoxic effects. Overall, the refining and bran particle size of wheat flours, besides their gluten composition and baking properties, represent novel choice factors to be considered when tailoring the manufacturing of plastic materials for selected requirements and uses.

3.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765648

RESUMEN

The aim of this work was to develop sustainable patches for wound application, using the biopolymer starch, created using a low-cost 3D printing PAM device. The composition of a starch gel was optimized for PAM extrusion: corn starch 10% w/w, ß-glucan water suspension (filler, 1% w/w), glycerol (plasticizer, 29% w/w), and water 60% w/w. The most suitable 3D printing parameters were optimized as well (nozzle size 0.8 mm, layer height 0.2 mm, infill 100%, volumetric flow rate 3.02 mm3/s, and print speed 15 mm/s). The suitable conditions for post-printing drying were set at 37 °C for 24 h. The obtained patch was homogenous but with low mechanical resistance. To solve this problem, the starch gel was extruded over an alginate support, which, after drying, becomes an integral part of the product, constituting the backing layer of the final formulation. This approach significantly improved the physicochemical and post-printing properties of the final bilayer patch, showing suitable mechanical properties such as elastic modulus (3.80 ± 0.82 MPa), strength (0.92 ± 0.08 MPa), and deformation at break (50 ± 1%). The obtained results suggest the possibility of low-cost production of patches for wound treatment by additive manufacturing technology.

4.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37630915

RESUMEN

Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress-strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.

5.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631271

RESUMEN

Hazelnut shells, the main waste deriving from hazelnut processing, represent an interesting source of active molecules useful in pharmaceutics, although they have not yet been examined in depth. A hydrosoluble extract (hazelnut shell extract, HSE) was prepared by the maceration method using a hydroalcoholic solution and used as the active ingredient of patches (prepared by casting method) consisting of composites of highly deacetylated chitosan and green clay. In vitro studies showed that the formulation containing HSE is able to stimulate keratinocyte growth, which is useful for healing purposes, and to inhibit the growth of S. aureus (Log CFU/mL 0.95 vs. 8.85 of the control after 48 h); this bacterium is often responsible for wound infections and is difficult to treat by conventional antibiotics due to its antibiotic resistance. The produced patches showed suitable tensile properties that are necessary to withstand mechanical stress during both the removal from the packaging and application. The obtained results suggest that the developed patch could be a suitable product to treat wounds.

6.
Int J Pharm ; 638: 122925, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37028573

RESUMEN

ß-glucan is a well-known functional and bioactive food ingredient. Recently, some studies highlighted several interesting pharmacological activities, such as hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor, antioxidant and anti-inflammatory. The aim of this study is to evaluate a novel application of ß-glucan, obtained from barley, for the development of formulations for skin use. Several water suspensions were obtained from barley flour of different particle sizes treated by high power ultrasonic (HPU) technique. Barley flour fraction in the range of 400-500 µm allowed to obtain a stable suspension, represented both by a water soluble and water insoluble fraction of ß-glucans, that showed excellent film forming ability. The plasticizer sorbitol as well as the bioadhesive biopolymer acacia gum were added to this suspension in order to obtain a gel suitable to prepare films by casting. The obtained films demonstrated suitable mechanical properties and ability to stimulate in vitro keratinocytes growth suggesting its possible application in dermatological field as for wound treatment. This study demonstrated the dual use of barley suspension: as excipient and as active ingredient.


Asunto(s)
Hordeum , beta-Glucanos , Ultrasonido , Harina , Agua , Extractos Vegetales
7.
Polymers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559837

RESUMEN

The development of bio-based materials is of great importance in the present environmental circumstances; hence, research has greatly advanced in the valorization of lignin from lignocellulosic wastes. Lignin is a natural polymer with a crosslinked structure, valuable antiradical activity, unique thermal- and UV-absorption properties, and biodegradability, which justify its use in several prospective and useful application sectors. The active functionalities of lignin promote its use as a valuable material to be adopted in the composite and nanocomposites arenas, being useful and suitable for consideration both for the synthesis of matrices and as a nanofiller. The aim of this review is to summarize, after a brief introduction on the need for alternative green solutions to petroleum-based plastics, the synthesis methods for bio-based and/or biodegradable thermoplastic and thermosetting nanocomposites, along with the application of lignin nanoparticles in all green polymeric matrices, thus generating responsiveness towards the sustainable use of this valuable product in the environment.

8.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559977

RESUMEN

Scanning microwave microscopy (SMM) is a novel metrological tool that advances the quantitative, nanometric, high-frequency, electrical characterization of a broad range of materials of technological importance. In this work, we report an inverted near-field scanning microwave microscopy (iSMM) investigation of a graphene oxide-based epoxy nanocomposite material at a nanoscopic level. The high-resolution spatial mapping of local conductance provides a quantitative analysis of the sample's electrical properties. In particular, the electrical conductivity in the order of ∼10-1 S/m as well as the mapping of the dielectric constant with a value of ∼4.7 ± 0.2 are reported and validated by the full-wave electromagnetic modeling of the tip-sample interaction.

9.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290797

RESUMEN

This review describes the state of the art in the field of poly (lactic acid) (PLA)-based materials activated by natural compounds and extracts (active ingredients, AIs) from plant sources for food and biomedical applications. With a multidisciplinary approach, after a description of the synthesis and properties of PLA, special attention was paid to the chemical properties and unconventional extraction technologies of AIs used for PLA activation. Innovative techniques for the incorporation of AIs into PLA; characterization and the antioxidant and antimicrobial properties of the novel materials were discussed. In view of future perspectives, this study has evidenced that some aspects need to be further investigated from joint research between academia and industry, according to the green chemistry principles and circular economy strategy.

10.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335859

RESUMEN

The success of wound treatment is conditioned by the combination of both suitable active ingredients and formulation. Grape seed extract (GSE), a waste by-product obtained by grape processing, is a natural source rich in many phenolic compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities and for this reason useful to be used in a wound care product. Bioadhesive polymeric patches have been realized by combining acacia gum (AG) and polyvinylpyrrolidone (PVP). Prototypes were prepared by considering different AG/PVP ratios and the most suitable in terms of mechanical and bioadhesion properties resulted in the 9.5/1.0 ratio. This patch was loaded with GSE combined with cyclic dextrin (CD) to obtain the molecular dispersion of the active ingredient in the dried formulation. The loaded patch resulted mechanically resistant and able to release GSE by a sustained mechanism reaching concentrations able to stimulate keratinocytes' growth, to exert both antibacterial and antioxidant activities.

11.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159913

RESUMEN

Nanotechnologies are attracting attention in various scientific fields for their technological and application potential, including their use as bio-activators and nanocarriers in agriculture. This work aimed to synthesize a hybrid material (ZnO@LNP) consisting of lignin nanoparticles containing zinc oxide (4 wt %). The synthesized ZnO hybrid material showed catalytic effect toward thermal degradation, as evidenced by the TGA investigation, while both spectroscopic and contact angle measurements confirmed a modification of surface hydrophilicity for the lignin nanoparticles due to the presence of hydrophobic zinc oxide. In addition, the antioxidant activity of the ZnO@LNP and the zinc release of this material were evaluated. At the application level, this study proposes for the first time the use of such a hybrid system to prime maize seeds by exploiting the release characteristics of this material. Concerning the dosage applied, ZnO@LNP promoted inductive effects on the early stages of seed development and plant growth and biomass development of young seedlings. In particular, the ZnO@LNP stimulated, in the primed seeds, a higher content of chlorophyll, carotenoids, anthocyanins, total phenols, and a better antioxidant activity, as supported by the lower levels of lipid peroxidation found when compared to the control samples.

12.
Polymers (Basel) ; 13(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34578071

RESUMEN

The overall migration behavior and the disintegration under composting conditions of films based on plasticized poly(lactic acid)/poly(3-hydroxybutyrate) (PLA-PHB) blends were studied, with the main aim of determining the feasibility of their application as biodegradable food packaging materials. The role of composition in the disintegration process was evaluated by monitoring the changes in physical and thermal properties that originated during the degradation process. PLA and PHB were blended in two weight ratios with 15 wt% of tributyrin, using a Haake mixer and then compression molded into ~150 µm films. We found that the migration level of all of the studied blends was below check intended meaning retained in non-polar simulants, while only plasticized blends could withstand the contact with polar solvents. The disintegration of all of the materials in compost at 58 °C was completed within 42 days; the plasticized PHB underwent the fastest degradation, taking only 14 days. The presence of the TB plasticizer speeded up the degradation process. Different degradation mechanisms were identified for PLA and PHB. To evaluate the annealing effect separately from bacteria degradation, the influence of temperature on materials in the absence of a compost environment was also studied. With the increasing time of degradation in compost, both melting temperature and maximum degradation temperature progressively decreased, while the crystallinity degree increased, indicating that the samples were definitely degrading and that the amorphous regions were preferentially eroded by bacteria.

13.
Polymers (Basel) ; 13(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198703

RESUMEN

In the present work, anthocyanin (ACN) hybrid nanopigments were synthetized by using a natural pomegranate dye (PD) and calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. A wide colour gamut was obtained with MMT-based nanopigments ranging from reddish to bluish hues caused by structural transformations of ACNs at different pH values. However, a buffer effect was observed with HT obtaining samples a similar final colour regardless of the synthesis conditions. Nanopigments added with a biomordant extracted from pomegranate peels showed a different colour compared to the incorporation of a commercial mordant due to the intrinsic colouring properties of the pomegranate bioadditive. The developed nanopigments were incorporated at 7 wt% loading to produce novel polyester-based bionanocomposites which were characterized in terms of thermal, mechanical and colour properties. The encapsulation of PD into the nanoclays improved its thermal stability, in particular for MMT-based nanopigments. The pH changes observed during the nanofillers synthesis affected the final colour of the MMT-based nanocomposites, inducing a general increase in ∆E* and a decrease in gloss values. Slight improvements were obtained in terms of elastic modulus for MMT-based polymer samples confirming the applicability of the developed bionanocomposites as colouring and reinforcement materials. A very similar environmental profile was obtained for MMT and HT-based nanofillers showing MMT-based nanopigments a slightly better general behaviour. The results of the LCA study evidenced the suitability of the processes used in this work to the circular bioeconomy approach through sustainable food waste management and the production of bioplastics using waste substrates.

14.
Molecules ; 26(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917644

RESUMEN

Oxidative stability of food is one of the most important parameters affecting integrity and consequently nutritional properties of dietary constituents. Antioxidants are widely used to avoid deterioration during transformation, packaging, and storage of food. In this paper, novel poly (vinyl alcohol) (PVA)-based films were prepared by solvent casting method adding an hydroxytyrosol-enriched extract (HTyrE) or an oleuropein-enriched extract (OleE) in different percentages (5, 10 and 20% w/w) and a combination of both at 5% w/w. Both extracts were obtained from olive oil wastes and by-products using a sustainable process based on membrane technologies. Qualitative and quantitative analysis of each sample carried out by high performance liquid chromatography (HPLC) and nuclear resonance magnetic spectroscopy (NMR) proved that the main components were hydroxytyrosol (HTyr) and oleuropein (Ole), respectively, two well-known antioxidant bioactive compounds found in Olea europaea L. All novel formulations were characterized investigating their morphological, optical and antioxidant properties. The promising performances suggest a potential use in active food packaging to preserve oxidative-sensitive food products. Moreover, this research represents a valuable example of reuse and valorization of agro-industrial wastes and by-products according to the circular economy model.


Asunto(s)
Antioxidantes/farmacología , Glucósidos Iridoides/farmacología , Aceite de Oliva/química , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Alcohol Polivinílico/química , Residuos/análisis , Rastreo Diferencial de Calorimetría , Depuradores de Radicales Libres/química , Glucósidos Iridoides/química , Fenoles/análisis , Alcohol Feniletílico/química , Alcohol Feniletílico/farmacología , Espectroscopía de Protones por Resonancia Magnética , Termogravimetría
15.
Pharmaceutics ; 13(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802607

RESUMEN

Pycnogenol (PYC) is a concentrate of phenolic compounds derived from French maritime pine; its biological activity as antioxidant, anti-inflammatory and antibacterial suggests its use in the treatment of open wounds. A bioadhesive film, loaded with PYC, was prepared by casting, starting with a combination of two biopolymer acqueous solutions: xanthan gum (1% wt/wt) and sodium alginate (1.5% wt/wt), in a 2.5/7.5 (wt/wt) ratio. In both solutions, glycerol (10% wt/wt) was added as plasticizing agent. The film resulted in an adhesive capable to absorb a simulated wound fluid (~ 65% wt/wt within 1 h), therefore suitable for exuding wounds. The mechanical characterization showed that the film is deformable (elastic modulus E = 3.070 ± 0.044 MPa), suggesting adaptability to any type of surface and resistance to mechanical solicitations. PYC is released within 24 h by a sustained mechanism, achieving a maximum concentration of ~ 0.2 mg/mL, that is safe for keratinocytes, as shown by cytotoxicity studies. A concentration of 0.015 mg/mL is reached in the first 5 min after application, at which point PYC stimulates keratinocyte growth. These preliminary results suggest the use of PYC in formulations designed for topical use.

16.
Nanomaterials (Basel) ; 11(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810279

RESUMEN

Lignin, and its derivatives, are the subject of current research for the exciting properties shown by this biomass. Particularly attractive are lignin nanoparticles for their eco- and biocompatibility compared to other nanomaterials. In this context, the effect of nanostructured lignin microparticles (LNP), obtained from alkaline lignin by acid treatment, on maize plants was investigated. To this end, maize seeds were primed with LNP at five concentrations: 80 mg L-1 (T80), 312 mg L-1 (T312), 1250 mg L-1 (T1250), 5000 mg L-1 (T5000) and 20,000 mg L-1 (T20000). Concerning the dose applied, LNP prompted positive effects on the first stages of maize development (germination and radicle length). Furthermore, the study of plant growth, biochemical and chemical parameters on the developed plants indicated that concerning the dose applied. LNP stimulated beneficial effects on the seedlings (fresh weight and length of shoots and roots). Besides, specific treatments increased the content of chlorophyll (a and b), carotenoid, and anthocyanin. Finally, the soluble protein content showed a positive trend in response to specific dosages. These effects are significant, given the essential biological function performed by these biomolecules. In conclusion, this research indicates as the nanostructured lignin microparticles can be used, at appropriate dosages, to induce positive biological responses in maize. This beneficial action deserves attention as it candidates LNP for biostimulating a crop through seed priming.

17.
Polymers (Basel) ; 13(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467159

RESUMEN

This study was dedicated to the functional characterization of innovative poly(lactic acid) (PLA)-based bilayer films containing lignocellulosic nanostructures (cellulose nanocrystals (CNCs) or lignin nanoparticles (LNPs)) and umbelliferone (UMB) as active ingredients (AIs), prepared to be used as active food packaging. Materials proved to have active properties associated with the antioxidant action of UMB and LNPs, as the combination of both ingredients in the bilayer formulations produced a positive synergic effect inducing the highest antioxidant capacity. The results of overall migration for the PLA bilayer systems combining CNCs or LNPs and UMB revealed that none of these samples exceeded the overall migration limit required by the current normative for food packaging materials in both non-polar and polar simulants. Finally, all the hydrophobic monolayer and bilayer films were completely disintegrated in composting conditions in less than 18 days of incubation, providing a good insight on the potential use of these materials for application as active and compostable food packaging.

18.
Polymers (Basel) ; 13(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379171

RESUMEN

Biopo-lybutylene succinate (bioPBS) is gaining attention in the biodegradable polymer market due to its promising properties, such as high biodegradability and processing versatility, representing a potential sustainable replacement for fossil-based commodities. However, there is still a need to enhance its properties for certain applications, with aesthetical and mechanical properties being a challenge. The aim of the present work is to improve these properties by adding selected additives that will confer bioPBS with comparable properties to that of current counterparts such as polypropylene (PP) for specific applications in the automotive and household appliances sectors. A total of thirteen materials have been studied and compared, being twelve biocomposites containing combinations of three different additives: a commercial red colorant, itaconic acid (IA) to enhance color fixation and zirconia (ZrO2) nanoparticles to maintain at least native PBS mechanical properties. The results show that the combination of IA and the coloring agent tends to slightly yellowish the blend due to the absorbance spectra of IA and also to modify the gloss due to the formation of IA nanocrystals that affects light scattering. In addition, for low amounts of IA (4 wt %), Young's Modulus seems to be kept while elongation at break is even raised. Unexpectedly, a strong aging affect was found after four weeks. IA increases the hydrophilic behavior of the samples and thus seems to accelerate the hydrolization of the matrix, which is accompanied by an accused disaggregation of phases and an overall softening and rigidization effect. The addition of low amounts of ZrO2 (2 wt %) seems to provide the desired effect for hardening the surface while almost not affecting the other properties; however, higher amounts tends to form aggregates saturating the compounds. As a conclusion, IA might be a good candidate for color fixing in biobased polymers.

19.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291757

RESUMEN

Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10-20 µm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 µm), expressed neuron-specific class III ß-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Membranas Artificiales , Células Madre Mesenquimatosas/citología , Neuronas/citología , Actinas/metabolismo , Materiales Biocompatibles/química , Biopolímeros , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Solventes
20.
Nanomaterials (Basel) ; 10(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142867

RESUMEN

Herein we present the production of novel nanocomposite films consisting of polylactic acid (PLA) polymer and the inclusion of nanoparticles of lignin (LNP), ZnO and hybrid ZnO@LNP (ZnO, 3.5% wt, ICP), characterized by similar regular shapes and different diameter distribution (30-70 nm and 100-150 nm, respectively). The obtained set of binary, ternary and quaternary systems were similar in surface wettability and morphology but different in the tensile performance: while the presence of LNP and ZnO in PLA caused a reduction of elastic modulus, stress and deformation at break, the inclusion of ZnO@LNP increased the stiffness and tensile strength (σb = 65.9 MPa and EYoung = 3030 MPa) with respect to neat PLA (σb = 37.4 MPa and EYoung = 2280 MPa). Neat and nanocomposite PLA-derived films were suitable for adult human bone marrow-mesenchymal stem cells and adipose stem cell cultures, as showed by their viability and behavior comparable to control conditions. Both stem cell types adhered to the films' surface by vinculin focal adhesion spots and responded to the films' mechanical properties by orchestrating the F-actin-filamin A interaction. Collectively, our results support the biomedical application of neat- and nanocomposite-PLA films and, based on the absence of toxicity in seeded stem cells, provide a proof of principle of their safety for food packaging purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...